56 research outputs found

    Can local single-pass methods solve any stationary Hamilton-Jacobi-Bellman equation?

    Get PDF
    The use of local single-pass methods (like, e.g., the Fast Marching method) has become popular in the solution of some Hamilton-Jacobi equations. The prototype of these equations is the eikonal equation, for which the methods can be applied saving CPU time and possibly memory allocation. Then, some natural questions arise: can local single-pass methods solve any Hamilton-Jacobi equation? If not, where the limit should be set? This paper tries to answer these questions. In order to give a complete picture, we present an overview of some fast methods available in literature and we briefly analyze their main features. We also introduce some numerical tools and provide several numerical tests which are intended to exhibit the limitations of the methods. We show that the construction of a local single-pass method for general Hamilton-Jacobi equations is very hard, if not impossible. Nevertheless, some special classes of problems can be actually solved, making local single-pass methods very useful from the practical point of view.Comment: 19 page

    Blended numerical schemes for the advection equation and conservation laws

    Get PDF
    In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating new schemes which inherit advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method

    A differential model for growing sandpiles on networks

    Full text link
    We consider a system of differential equations of Monge-Kantorovich type which describes the equilibrium configurations of granular material poured by a constant source on a network. Relying on the definition of viscosity solution for Hamilton-Jacobi equations on networks, recently introduced by P.-L. Lions and P. E. Souganidis, we prove existence and uniqueness of the solution of the system and we discuss its numerical approximation. Some numerical experiments are carried out

    A numerical method for Mean Field Games on networks

    Get PDF
    We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out

    A level set based method for fixing overhangs in 3D printing

    Get PDF
    3D printers based on the Fused Decomposition Modeling create objects layer-by-layer dropping fused material. As a consequence, strong overhangs cannot be printed because the new-come material does not find a suitable support over the last deposed layer. In these cases, one can add some support structures (scaffolds) which make the object printable, to be removed at the end. In this paper we propose a level set method to create object-dependent support structures, specifically conceived to reduce both the amount of additional material and the printing time. We also review some open problems about 3D printing which can be of interests for the mathematical community

    A measure theoretic approach to traffic flow optimization on networks

    Full text link
    We consider a class of optimal control problems for measure-valued nonlinear transport equations describing traffic flow problems on networks. The objective isto minimise/maximise macroscopic quantities, such as traffic volume or average speed,controlling few agents, for example smart traffic lights and automated cars. The measuretheoretic approach allows to study in a same setting local and nonlocal drivers interactionsand to consider the control variables as additional measures interacting with the driversdistribution. We also propose a gradient descent adjoint-based optimization method, ob-tained by deriving first-order optimality conditions for the control problem, and we providesome numerical experiments in the case of smart traffic lights for a 2-1 junction.Comment: 20 pages, 6 figure

    Reliable optimal controls for SEIR models in epidemiology

    Full text link
    We present and compare two different optimal control approaches applied to SEIR models in epidemiology, which allow us to obtain some policies for controlling the spread of an epidemic. The first approach uses Dynamic Programming to characterise the value function of the problem as the solution of a partial differential equation, the Hamilton-Jacobi-Bellman equation, and derive the optimal policy in feedback form. The second is based on Pontryagin's maximum principle and directly gives open-loop controls, via the solution of an optimality system of ordinary differential equations. This method, however, may not converge to the optimal solution. We propose a combination of the two methods in order to obtain high-quality and reliable solutions. Several simulations are presented and discussed

    Approximation of the value function for optimal control problems on stratified domains

    Get PDF
    In optimal control problems defined on stratified domains, the dynamics and the running cost may have discontinuities on a finite union of submanifolds of RN. In [8, 5], the corresponding value function is characterized as the unique viscosity solution of a discontinuous Hamilton-Jacobi equation satisfying additional viscosity conditions on the submanifolds. In this paper, we consider a semi-Lagrangian approximation scheme for the previous problem. Relying on a classical stability argument in viscosity solution theory, we prove the convergence of the scheme to the value function. We also present HJSD, a free software we developed for the numerical solution of control problems on stratified domains in two and three dimensions, showing, in various examples, the particular phenomena that can arise with respect to the classical continuous framework
    • …
    corecore